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Abstract

Verifying (or at least attempting to falsify)
claims about one language being more
hard to parse than another, or about one
parser being applicable to a maximally
wide range of languages, used to quickly
devolve into apples-and-oranges compari-
son since different languages, i.e., differ-
ent treebanks also mean different annota-
tion schemes and a different source of text.

In this paper, we use two datasets that
contain annotations for several languages
according to Universal Stanford Depen-
dencies (UniDepTB 1.0 and HamleDT
2.0) to perform a comparison of different
parsers, languages and (partially) annota-
tion schemes both at a coarse level and at
a finer level of characterizing differences
by typical patterns of the errors in context.

1 Introduction

Analyzing and understanding the performance of a
parser is crucial for determining where additional
complexity or effort can help, and also in order
to understand where model combination(s) can or
cannot help. At the very coarsest level, one might
consider the results from a single evaluation met-
ric (e.g. UAS, LAS, ParsEval, . . . ), and try to
find explanations or correlates in different factors
that may affect the difficulty of the task, especially
treebank size and language, but possibly also an-
notation scheme.

Beyond such coarse-grained approaches look-
ing at the overall quality of parser output, once
can also look at at individual parses (e.g. using the
WhatsWrong visualization tool1). For languages
one is not intimately familiar with, or when the
types of errors are relatively diverse, this approach
will drown the user in too much information.

1code.google.com/whatswrong

This is why, in this paper, we attempt to find a
middle ground between these two extremes by go-
ing from overall measures to phenomenon-specific
measures, to substructures setting errors regard-
ing these phenomena in context, all while trying
to correlate the phenomena, and the relevant sub-
structures, to influencing factors such as parsers,
annotation schemes, and treebank size.

1.1 Finer-grained Evaluation

McDonald and Nivre (2007) analyze the results
from the CoNLL-X shared task on dependency
parsing in multiple languages. Because McDonald
and Nivre’s work predate universal dependency
schemes, they have to manually identify related
dependency labels across annotation schemes and
assume that attachment difficulty is comparable
across annotation schemes. Still, McDonald and
Nivre are able to show that the accuracy of the de-
pendencies produced shows that certain dependen-
cies (as characterized by the part-of-speech of the
dependent) are more difficult than others, includ-
ing those of adpositions and conjunctions.

Kummerfeld et al. (2012) compare various
parsers on the Penn Treebank regarding several
specific constructions, including the attachment
of prepositional phrases, temporal noun phrases,
clauses as well as coordinations, NP-internal
structures and several others, showing that in cer-
tain cases (adding self-training, adding a reranker
to the Charniak parser, looking at oracle parses
for larger and larger k-best lists) a uniform effect
on all constructions can be found, whereas differ-
ences between varying genres of the Brown corpus
used as out-of-domain testing set, or between very
different parsing models show more pronounced
differences between different categories.

1.2 Mining for Idiosyncrasies

Goldberg and Elhlad (2010) analyze different
parsers by training a tree boosting classifier to dis-
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tinguish between test set sentences and sentences
from parser output, with the intuition that con-
structions that a parser overproduces are taken by
the classifier as indications for sentences from the
parser, whereas those constructions that are usu-
ally underproduced are good indicators for sen-
tences that came from the gold-annotated test set.

In an approach to find idiosyncratic structures in
dependency trees, Dickinson (2010) looks at rule
expansions (i.e. one head and its dependent) as
well as children bigrams that are rare or not found
in the training corpus, and shows that it is possible
to find erroneous dependencies with some success.

1.3 Comparing Ingredients

Schwartz et al. (2012) use the Penn Treebank in
conjunction with a customized version of the LTH
dependency converter of Johansson and Nugues
(2007) to investigate how several parsers perform
on variant conversions of the treebank. For sev-
eral phenomena, they found that parsing results
strongly preferred one particular alternative: in co-
ordination, using the first conjunct as a head is
strongly preferred over using the conjunction as a
head; in noun phrases, using the noun as a head is
strongly preferred over using the determiner, and
in prepositional phrases, using the preposition as
a head is preferred over using the noun phrase’s
head instead. They also found a (less pronounced)
preference for modals and “to” particles as the
heads of complex verb phrases.

The work of Popel et al. (2013) focuses more
narrowly on coordination structures in treebanks
covering 26 languages, and perform roundtrip ex-
periments for a conversion to annotation in the
style of the Prague treebank and back to the origi-
nal structures, noting that usually, but not always,
the roundtrip is possible with very little in infor-
mation loss.

Comparing results within different annotation
schemes is also the motivation for the work of
Tsarfaty et al. (2011), who propose to evaluate
parses across schemes by creating a generalized
tree that contains the information common to two
annotation schemes.

In the remainder of this paper, we will first give
a brief overview over the treebanks and parsers
used (§2), discuss our approach to link overall
quality measures and coarse-grained measures for
certain phenomena to influencing factors (§3.1),
finishing by drilling down into the most typical

contexts in which this error-ingredient interaction
plays out (§3.2).

2 Materials

2.1 Treebanks
The HamleDT set of treebanks (Zeman et al.,
2012) contains different dependency treebanks
converted to the annotation style of the Prague De-
pendency Treebank (Böhmova et al., 2001), in par-
ticular using conjunctions as the head in coordina-
tion, and using long part-of-speech tags with mul-
tiple feature slots instead of using a separate field
for morphological properties. The conversion tool
used in HamleDT has been extended to produce
a version in Stanford dependencies (Rosa et al.,
2014). In the Stanfordized versions of HamleDT,
we have the short part-of-speech tags of Petrov
et al. (2012), a longer version containing addi-
tional information, and an additional layer of mor-
phological properties.

The Universal Dependencies Treebank 1.0
(McDonald et al., 2013) contains only trees match-
ing the Stanford Dependencies schema, consisting
in part of trees converted from existing treebanks,
and in part from newly annotated text. The ver-
sion 1 of the Universal Treebank only contains the
short part-of-speech tags of Petrov et al. (2012).2

We used five languages that are at the inter-
section of those covered by both HamleDT and
the Universal Dependencies Treebank, namely
German, English, Finnish, Swedish and Spanish.
While for some languages, the textual material
is the same (the Finnish treebank is the same
between both schemes, while the German part
of HamleDT is entirely from the Tiger treebank
and the corresponding part of UniDepTB contains
some sentences from Tiger but also some newly
annotated sentences with social media text).

2.2 Parsers
MaltParser (Hall et al., 2006) is a transition-
based parser for several different transition sys-
tems (arc-eager, arc-standard, using either a pseu-
doprojective transform or a swapping transition to
account for nonprojective dependencies. To find
sensible settings for transition system, features,
and SVM hyperparameters, we used the MaltOp-
timizer software of Ballesteros and Nivre (2012).

2The newer Version 2.0 of the Universal Dependencies
treebank does contain morphological tags in addition to the
coarse part-of-speech tags, but uses a different file format
from that used in HamleDT and UniDepTB 1.0.
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The MATE parser uses a transition-based sys-
tem with beam search and a scoring system based
on third-order factors (Bohnet and Kuhn, 2012),
which makes it competitive to other third-order
graph-based parser despite using a transition-
based search graph to form its hypotheses. The
MATE parser is able to reach nonprojective parses
using hill-climbing from a projective solution.

TurboParser (Martins et al., 2013) uses a dual
decomposition approach for the decoding of de-
pendency trees with third-order factors.

The RBG parser (Zhang et al., 2014) is a third-
order parser with additional global features that
we use in two variants: the first, which we ref-
erence as RBG1 in the following text, uses ex-
act decoding on first-order edges using the Chu-
Liu-Edmonds algorithm as proposed by McDon-
ald et al. (2005). The second, which uses the
full capabilities of the RBG parser and which we
call RBG3 in the following text, uses hill-climbing
with random restarts to find a good solution for
a model using third-order factors and additional
global features.

3 Experiments

In the following, we perform an analysis of pars-
ing experiments that have been done for the five
different parsers (Malt+Optimizer, MATE, Turbo,
RBG1, RBG3) across five different languages
(German, English, Finnish, Swedish, Spanish) us-
ing two variants of the Universal Dependency
Treebank (normal plus content-head) plus five
variations of HamleDT with PDT or Stanfordized
trees and short, long and (for the Stanfordized ver-
sion) long plus morphology tags. Certain com-
binations of languages and schemes/tagsets (e.g.,
Finnish with standard Universal Dependencies,
English with content-head Universal Dependen-
cies) were not available, which means that we
cover most, but not all of these combinations.

In addition to the cross-product of
parsers/languages/schemes for all datasets,
we added parsing results for RBG1 and RBG3 for
all the languages in standardized training set sizes
of 3.500 sentences and (where available) 10.000
sentences.

3.1 Factorial Analysis

In order to detect general trends among the results
of the experiments we performed with many influ-
encing factors (essentially a design that has com-

binations of different languages, parsering models
and annotation schemes). Because, e.g., Finnish
also has a rather small treebank, uses the content-
head variant of Stanford dependencies and no mor-
phological tags, a regression model can potentially
give a clearer picture than just looking at averages
in this case.

We fitted a linear model predicting several
measures of success such as labeled accuracy
(LAS), accuracy for coordination (Coord in PDT
scheme, cc in the USD scheme), for subjects and
objects (Sb/nsubj and Obj/obj,iobj,dobj).
We fit a linear model including the original fac-
tors as well as a limited number of interactions
that were selected using Akaike’s Information Cri-
terion (AIC), which provides a tradeoff between
(LAS-prediction) likelihood and number of model
parameters. We used the Ordinary Least Squares
implementation of the statmodels package.

Looking at table 1, and the subset of experi-
ments reported in table 2, we find some very gen-
eral findings: having more data is beneficial, the
content-head schema seems to make things signif-
icantly worse. We see that German and Finnish
(languages with free(r) word order) profit most
from long POS tags and morphological informa-
tion, while English and Swedish do not, and that
RBG1 and RBG3 results seem to benefit strongly
from the short POS tags.3

Looking at the parser-size and language-size in-
teraction, we see two large outliers – Finnish gain-
ing over 5 LAS points for every doubling in train-
ing size, and Swedish only about 0.25 points with
each doubling. These outliers may have occurred
due to the fact that our experiments do not contain
data points for larger treebank sizes.

3.2 Specific Phenomena

In order to be able to reason about specifics in
the behaviour of parsers in multiple settings, or
for multiple languages, we used the gSpan algo-
rithm (Yan and Han, 2002) to extract patterns with
a minimum frequency as well as minimum and
maximum size.

We can then use weighting functions to rank
patterns by some interesting properties, or to com-
pare their frequency across two different condi-
tions.

3This can be confirmed by a look into the parser code,
which contains special cases for the universal tags of con-
junctions, adpositions, punctuation and verbs.
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ADJ NOUNNOUN

s:amodg:amod

PRON_artNOUN

s:obj
g:nsubj

Figure 1: Two of the most characteristic patterns
(by χ2) for Spanish

Frequent Error patterns One question we have
is whether there are kinds of errors that are typ-
ical of particular parsers, annotation schemes, or
other variables. To assess this, we construct an
acyclic graph formed by forming the (discrimi-
nated) union of system and gold edges (marking
edges that are system-only, gold-only, or labeled
differently). Using gSpan, we filtered for those
patterns that were (a) frequent enough, and (b)
contained an edge that indicated non-matching of
gold tree and system output.

For selecting patterns based on statistical sig-
nificance, we computed expected counts (based on
error patterns mined from all experiments) and ob-
served counts (error pattern frequency in the con-
dition that we focus on), and compute Pearson’s
χ2 statistic to rank subgraphs that are character-
istic for (i.e., strongly associated with) a partic-
ular subset of the graphs, for example in Figure
1 contrasting the most typical error patterns for
German with those for Spanish in the parses of
the RBG1 parser. In that particular instance, we
discover some idiosyncracies of HamleDT’s con-
version to universal dependencies of the German
or Spanish side; the German conversion contains
sentence dependencies as a governor (presumably
in gapping or coordination), whereas Spanish has
a PRON art POS tag that the other languages do
not share, and the possibility of attaching (some)
adjectives either to the right and to the left.

Overproduced structures To get an idea if to-
day’s parser have a bias for over- or underpro-
ducing certain structures, we counted for every
frequent-enough structure how often it occurs in
the gold standard, and in the output of a given
parser, respectively.

Using frequent error patterns to compare RBG1
and RBG3 on all subgraphs that occur at least

20 times, for example, we find that the edge-
factored RBG1 model has a strong tendency to
over- and underproduce certain structures (over-
producing 36% and underproducing 22% of pat-
tern types) whereas RBG3 slightly reduces these
type counts (with 40% and 20% of these sub-
graphs, respectively), with a relatively stronger
decrease in the actual occurrences of these pat-
terns. Like Goldberg and Elhadad, we find that
the idea of over- and underproduction finds a very
substantial number of such structures for simpler
models (such as MaltParser’s deterministic shift-
reduce model or the edge-factored RBG1) while
this tendency is much diminished for the state-of-
the-art third-order models.

Small treebank versus crosslingual parsers In
recent research, approaches to port parsers to lan-
guages without treebanks using either projection
or model transfer have received a lot of attention
– justifiably so, since they could help save signifi-
cant effort in building treebanks.

Here we compare the output of the state-of-
the-art crosslingual parser of Guo et al. (2015),
which uses word clusters and embeddings to gen-
eralize over words in different languages, with
a first-order factored model (RBG1) trained on
3 500 sentences (which would admittedly still take
a large amount of time to produce, but is less than
10% of the size of the larger treebanks in German,
English or Czech).

Maybe surprisingly, the errors that the crosslin-
gual models makes more frequently with a large
margin (in between 19% and 20% of all sentences)
all concern root edges and punctuation:

. VERB

A...

g:p

s:p

ROOT VERB

A...

g:root

s:p

.

g:p

ROOT VERB

A...

g:root

s:root

ROOT A...

VERB

s:root

s:p

.

g:p

Larger treebank versus smaller treebank
Considering the annotation of data, we may also
ask what we gain from annotating a treebank that
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is significantly larger, but not extremely so (i.e.,
10 000 sentences rather than 3 500 sentences). In
this case, many of the errors that the larger-
treebank parser can avoid (between 1.6% and
1.8% of sentences) are cases of PP attachment or
genitives (USD label nmod).

NOUN

NOUNVERB

s:nmodg:nmod

NOUN

NOUNNOUN

s:nmodg:nmod

Weaker versus stronger parsing model Simi-
larly to going from a weaker to a stronger parsing
model, we find that the patterns with the largest
normalized frequency difference are those involv-
ing PP attachment; due to our method of filtering
(requiring both a false positive and a false negative
edge), we find a number of patterns that show cor-
related errors (with differences between 0.8% and
1.3% of all sentences):

NOUN VERBNOUN

s:nmod g:nsubj

NOUN VERBNOUN

s:nmodg:nmod

4 Summary

In this paper, we addressed the question of the
influence of languages, parsing models and part-
of-speech representations in universal dependency
parsing in two ways, one on a very coarse level
(aggregating over different experiments with the
same or roughly comparable annotation schemes),
and one on a finer but still aggregate level (min-
ing for error patterns that are considerably more
frequent in one setting than in another).

Our first proposal, aggregating parsing results
not by averaging but in a regression model, is
preferable to the former because it allows us to try
to separate out multiple influences – for example,
Finnish generally being a difficult language for to-
day’s parsers because of its morphological struc-
ture as well as having a relatively small treebank.
While the model we present here is still relatively
simple, we hope it will inspire more complex mod-
els that can predict parsing accuracy based on a
more diverse set of factors (e.g., morphological

richness, counts for unknown words, or sentence
length).

The subgraph mining approach in the second
part of the paper has the advantage over older ap-
proaches such as Goldberg’s that it can represent
more complex structures, including those that con-
tain both system and gold-standard parses as in
our error pattern approach. The use of normalized
frequency differences instead of using a boosting-
based linear classifier has both the advantage and
the disadvantage of yielding higher weights for
structures with many variants where a regularized
linear classifier would either shrink all weights to
a smaller size (L2 regularization) or shrink the
weights for all but one representative for a group
of several related patterns (L1 regularization).

In this paper, we have addressed the question of
assessing the influence of languages and annota-
tion schemes in universal dependency parsing, a
question which had only partially been addressed
before.

We show that when using gold part-of-speech
tags, the improvements from going from a smaller
treebank to a larger one, or from a weaker (edge-
factored) parser to a stronger (third-order/global)
one are dominated by PP attachment effects; how-
ever it is not clear whether these effects would
persist with realistic morphosyntactic tagging (as
POS and morphology errors would often propa-
gate to syntax), nor whether using semi-supervised
parsing techniques (which can easily improve PP
attachment) would result in a different distribution
of errors.
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Appendix A: Factor Analysis (all schemes/parsers)
Property Average ∆ Avg OLS Loadings

LAS LAS LAS Coord Subj Obj
Global Average/Intercept 82.10 — 72.90 48.72 73.56 61.19
size — — 1.30 3.12 2.06 2.29
Parsers
MaltParser 76.63 -5.46 — — — —
MaltOptimizer 80.83 -1.27 3.70 7.10 3.27 3.94
MATE 82.46 0.37 5.46 14.61 3.62 5.21
RBG1 83.14 1.04 2.98 8.73 -0.55 -0.03
RBG3 84.49 2.39 4.61 15.27 2.31 1.27
TurboParser 82.17 0.07 5.46 15.21 3.52 3.75
Languages
German 82.42 0.32 — — — —
English 87.05 4.95 1.44 0.44 11.29 14.99
Spanish 85.60 3.50 2.28 -0.44 2.39 10.99
Finnish 69.39 -12.71 -8.14 -2.26 -9.60 -22.68
Swedish 82.03 -0.06 -5.28 -6.63 4.80 4.08
POS/morph information
long 81.14 -0.96 — — — —
long+feat 81.79 -0.31 -0.14 -0.02 1.24 0.53
short 82.57 0.48 -1.70 0.80 -5.52 -3.99
Conversion
HamleDT 81.89 -0.21 — — — —
UniDepTB 82.77 0.67 -2.28 2.38 -6.00 -6.36
Interactions
German long+feat 83.85 1.75 — — — —
German short 81.69 -0.40 — — — —
English long+feat 85.47 3.37 -0.79 -0.13 -2.91 -3.13
English short 88.26 6.16 1.25 -1.00 5.28 3.26
Spanish long+feat 85.97 3.87 -0.66 -0.42 -2.50 -3.05
Spanish short 85.33 3.23 0.94 2.25 3.46 2.55
Finnish long+feat 71.89 -10.21 2.56 0.58 1.42 6.42
Finnish short 68.16 -13.94 -2.38 -3.08 -2.00 -4.62
Swedish long+feat 80.96 -1.14 -0.43 0.05 -2.22 -2.89
Swedish short 82.84 0.74 1.55 0.53 4.35 3.24
MaltParser long+feat 77.23 -4.87 — — — —
MaltParser short 75.97 -6.12 — — — —
MaltOptimizer long+feat 82.77 0.67 0.76 0.00 1.05 3.20
MaltOptimizer short 77.77 -4.33 -1.73 -3.99 -2.64 -0.42
MATE long+feat 84.21 2.11 1.52 0.71 2.61 4.39
MATE short 81.37 -0.73 -0.07 -3.50 0.71 0.31
RBG1 long+feat 80.51 -1.59 0.29 -0.44 0.14 0.85
RBG1 short 84.34 2.25 5.26 15.89 4.67 2.52
RBG3 long+feat 82.30 0.20 0.46 0.92 0.28 0.70
RBG3 short 85.54 3.45 4.84 12.19 3.38 2.27
TurboParser long+feat 83.84 1.74 1.15 0.17 2.54 5.28
TurboParser short 80.95 -1.15 -0.48 -4.08 0.23 0.96
German HamleDT 83.34 1.24 — — — —
German UniDepTB 80.17 -1.93 — — — —
English UniDepTB 91.35 9.25 6.56 8.76 6.57 14.96
Spanish UniDepTB 83.29 1.19 -1.94 -1.86 -2.47 3.89
Finnish UniDepTB 73.35 -8.75 8.76 3.66 11.45 26.26
Swedish UniDepTB 83.30 1.20 5.98 9.23 6.29 12.04
size English — — 0.53 -0.72 -1.07 -0.59
size Spanish — — 0.57 -0.80 0.09 -0.19
size Finnish — — -1.14 1.72 0.52 -0.11
size Swedish — — 1.47 1.95 0.37 1.22

Table 1: Factor analysis of all experiments
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Appendix B: Factor Analysis (USD, RBG parser, subsets)

Property Average ∆ Avg OLS Loadings
LAS LAS LAS Coord Subj Obj

Global Average/Intercept 84.74 — 76.63 72.75 65.95 51.35
size — — 1.15 1.39 1.52 2.28
Parsers
RBG1 83.97 -0.77 — — — —
RBG3 85.51 0.77 1.82 6.56 3.64 1.60
Languages
German 83.72 -1.01 — — — —
English 89.10 4.36 0.14 -16.47 13.22 17.16
Spanish 87.08 2.34 2.47 -14.13 8.35 23.06
Finnish 69.99 -14.75 -2.87 -0.59 -1.91 -4.41
Swedish 84.56 -0.18 -2.61 -16.50 15.01 10.48
POS/morph information
long 80.72 -4.02 — — — —
long+feat 81.34 -3.40 0.79 -0.60 3.78 3.83
short 86.29 1.55 4.06 11.43 3.50 0.57
Conversion
HamleDT 83.91 -0.83 — — — —
UniDepTB 86.47 1.73 -2.69 -6.47 -0.76 3.31
Interactions
German long+feat 84.28 -0.46 — — — —
German short 83.68 -1.06 — — — —
English long+feat 85.41 0.67 -1.00 -2.42 -4.85 -2.20
English short 90.31 5.57 1.32 4.23 3.77 1.28
Spanish long+feat 86.07 1.33 -1.14 -0.69 -4.29 -3.47
Spanish short 87.37 2.63 0.41 5.72 -0.21 0.92
Finnish long+feat 69.03 -15.71 1.91 1.05 -1.74 -1.21
Finnish short 74.68 -10.06 4.56 -0.02 6.32 2.09
Swedish long+feat 81.93 -2.81 -0.89 0.89 -3.60 -3.21
Swedish short 85.60 0.86 0.62 4.47 -0.85 1.90
RBG3 long 81.63 -3.11 — — — —
RBG3 long+feat 82.31 -2.43 0.12 1.60 -0.05 -1.13
RBG3 short 86.98 2.24 -0.43 -3.47 -1.78 -0.64
English UniDepTB 91.96 7.22 6.11 13.92 1.14 12.11
Spanish UniDepTB 85.56 0.82 -0.91 5.03 -5.94 -5.79
Swedish UniDepTB 86.17 1.43 5.47 12.83 3.41 9.08
size English — — 0.74 1.97 0.09 -0.08
size Spanish — — 0.51 1.79 0.63 -0.46
size Finnish — — -5.52 -1.12 -3.66 -8.47
size Swedish — — 0.91 2.70 -0.63 0.72

size‡: log2 of sentences
1024

Table 2: Factor analysis: only “standard” Universal Dependencies, only RBG1/RBG3 but including
3 500 and 10 000 sentences reduced training sets
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