
Proceedings of the 6th Workshop on Statistical Parsing of Morphologically Rich Languages (SPMRL 2015), pages 21–30,
Bilbao, Spain, July 23rd 2015. c©2015 The Authors

Can Distributed Word Embeddings be an alternative to costly linguistic
features: A Study on Parsing Hindi

Aniruddha Tammewar∗, Karan Singla*, Bhasha Agrawal, Riyaz Bhat and Dipti Misra Sharma
Language Technologies Research Center

IIIT-Hyderabad, India
(uttam.tammewar, karan.singla, bhasha.agrawal, riyaz.bhat)@research.iiit.ac.in

dipti@iiit.ac.in

Abstract

Word Embeddings have shown to be use-
ful in wide range of NLP tasks. We ex-
plore the methods of using the embed-
dings in Dependency Parsing of Hindi,
a MoR-FWO (morphologically rich, rel-
atively freer word order) language and
show that they not only help improve the
quality of parsing, but can even act as a
cheap alternative to the traditional features
which are costly to acquire. We demon-
strate that if we use distributed represen-
tation of lexical items instead of features
produced by costly tools such as Morpho-
logical Analyzer, we get competitive re-
sults. This implies that only mono-lingual
corpus will suffice to produce good accu-
racy in case of resource poor languages for
which these tools are unavailable. We also
explored the importance of these represen-
tations for domain adaptation.

1 Introduction

Hindi is a MoR-FWO language. It exerts a rela-
tively free word order with SOV being the default
configuration. Due to the flexible word order,
dependency representations are preferred over
constituency for its syntactic analysis (Bharati and
Sangal, 1993). The dependency representations
do not constrain the order of words in a sentence
and thus are better suited for flexible ordering of
words(Hudson, 1984)(Sheiber, 1985)(Bharati et
al., 1995). The dependency grammar formalism
used for Hindi Treebank annotation is Computa-
tional Paninian Framework(CPG) (Begum et al.,
2008; Bharati et al., 2009). The dependency re-
lations in CPG formalism are closer to semantics
and hence are also referred as syntactico-semantic

∗* Authors have equal contribution to the paper

relations.

Last decade has witnessed several efforts to-
wards developing robust data driven dependency
parsing techniques (Kübler et al., 2009). The ef-
forts, in turn, initiated a parallel drive for build-
ing dependency annotated treebanks (Tsarfaty et
al., 2013) which serve as a data source for training
data driven dependency parsers. The annotations
are often multi-layered and furnish information
on part of speech category of word forms, their
morphological features, chunking related words
and syntactic relations. But error analysis show
that the annotated information is not enough for
good quality parsing. The efforts towards adding
richer information to the treebank started to help
parser disambiguate syntactic relations and sug-
gested that semantic information could help pars-
ing (Jain et al., 2013).

Annotating treebank with rich information im-
proves the results but annotation in itself is a very
costly task in terms of both, time and manual
work. Hence, manually annotated data can not
be made available for all the languages. Even if
treebanks with rich information are available, it is
difficult to accurately generate these features au-
tomatically in real time parsing. The tools used
to generate these features such as morph analyzer,
WordNet (in Case of semantic information), etc.
are also costly to build. Resource poor languages
do not have these tools readily available. The only
thing very easily available for any language is the
mono-lingual text corpus. Efforts are being made
to exploit the use of mono-lingual corpus to cap-
ture all this information in word-embeddings us-
ing continuous vector space models. Using word-
embeddings as features have shown to be useful
and an easy replacement to the costly features in
different NLP tasks. We try to exploit the same
for the task of Hindi Dependency Parsing.

We show that the word embeddings learned

21

from vector space models can replace almost all
the features and hence costly tools and using it as
a stand-alone feature can produce better results.
We also show that these features when used as
complementary features instead of replacement,
improve the results further. Another outcome of
our experiments is the improvement in the parsing
quality when the training and testing data are from
different domains.

2 Related Work

Chen and Manning (2014) have recently pro-
posed a way of learning a neural network classifier
for use in a greedy, transition-based dependency
parser. They used small number of dense features,
unlike most of the current parsers which use mil-
lions of sparse indicator features. The small num-
ber of features makes it work very fast. Use of
low dimensional dense word embeddings as fea-
tures in place of sparse features has recently been
used in many NLP tasks and successfully shown
improvements in terms of both, time and accura-
cies. The recent works include POS tagging (Col-
lobert et al., 2011), Machine Translation (Devlin et
al., 2014) and Constituency Parsing (Socher et al.,
2013). These dense, continuous word-embeddings
give strength to the words to be used more ef-
fectively in statistical approaches. The problem
of data sparsity is reduced and also similarity be-
tween words can now be calculated using vectors.

3 Data & Tools

3.1 Hindi TreeBank

Here, we give an overview of Hindi Treebank
(Hindi DTB). Pre-release version of Hindi De-
pendency Treebank data has been made available
for download for researchers 1. It is a multi-
layered dependency treebank with morphologi-
cal, part of speech and dependency annotations
based on the CPG. CPG provides an essentially
syntactico-semantic dependency annotation, in-
corporating karaka (e.g., agent, theme, etc.), non-
karaka (e.g. possession, purpose) and other (part
of) relations. A complete tag-set of dependency
relations based on CPG can be found in (Bharati
et al., 2009).

1http://ltrc.iiit.ac.in/treebank_H2014

Training Testing
sentences 14321 1799
Token-Count 299690 41514
#Chunk-Count 167910 20992

Table 1: Hindi TreeBank Statistics

3.2 Hindi Mono-Lingual Data
We used news corpus of Hindi(distributed as a
part of WMT’142 translation task) for vector space
modeling. The data consists of about 4.4 million
sentences, which also includes the sentences from
the treebank we are using for training and test-
ing. The data has around 79.7 million tokens, with
unique vocabulary of 682,362 words.

3.3 Tools Used
We used MaltParser(version 1.8)3 (Nivre et al.,
2007) for training the parser and Word2Vec4 for
vector space modeling.
Word2Vec provides an efficient implementation
of continuous bag-of-words and skip-gram archi-
tectures for computing vector representations of
words. We give more information about the work-
ing of vector space modeling in the next section.

4 Background and Experimental setup

In this section, we will explain the setup required
for our experiments.

4.1 Inter-Chunk Parsing
In our experiments, we focus on establishing
dependency relations between the chunk5 heads
which we henceforth denoted as inter-chunk pars-
ing. The relations between the tokens of a chunk
(intra-chunk dependencies) are not considered for
experimentation. The decision is motivated by
the fact that intra-chunk dependencies can easily
be predicted automatically using a finite set of
rules (Kosaraju et al., 2012). Moreover, we also
observed high learnability of intra-chunk relations
from an initial experiment. We found the accura-
cies of intra-chunk dependencies to be more than
99.00% for both Labeled Attachment and Unla-
beled Attachment.

2http://www.statmt.org/wmt14/
translation-task.html

3http://www.maltparser.org/
4https://code.google.com/p/word2vec/
5A chunk is a set of adjacent words which are in depen-

dency relation with each other, and are connected to the rest
of the words by a single arc

22

4.2 Available Features
Table 2 describes all the features and their prop-
erties annotated for each token, in Hindi tree-
bank. The Col column tells the column number
where the corresponding feature can be found in
the CoNLL file. Following list describes different
kinds of features provided in the treebank:

• Word-form: The word itself.

• POS Information: POS tags are annotated
for each node in the sentence following
the POS and chunk annotation guidelines
(Bharati, 2006). List of POS tags used for
annotation can be found in Appendix 13.1.

• Morph Information: The morphological fea-
tures have eight mandatory feature attributes
for each node. These features are classified as
root(lemma), category(CPOS), gender, num-
ber, person, case, post position/Vibhakti (for
a noun) or tense, aspect, modality (TAM) (for
a verb).

• Chunk Information: After annotation of
POS tags, chunk boundaries are marked
with appropriate assignment of chunk labels
(Bharati, 2006). List of Chunk tags used for
annotation can be found in Appendix 13.2.

• Other Features: In the dependency treebank,
apart from POS, morph, chunk and depen-
dency annotations, some special features for
some nodes are marked. For example, for the
main verb of a sentential clause, information
about whether the clause is declarative, in-
terrogative or imperative is marked (stype).
Similarly, whether the sentence is in active or
passive voice is also marked (voice-type).

In the treebank, all the features are manually an-
notated and thus have good quality. Almost all
of the features provided contain rich information,
useful for parsing. But, at parsing time, it is un-
realistic to work with gold features. Instead these
features should be derived automatically using the
available tools. The corresponding tools required
to obtain each feature are mentioned in Column 2.
Note that even the TAM and Vibhakti features are
considered as morph features, they are extracted
using a different tool ‘Vibhakti Computation Tool’.
We divide the features used in parsing into two
sets based on how efficiently they can be learned
and produced. A feature is trivial if the tool used

to obtain it can be made easily available and pro-
vides good quality. In case of Hindi, the widely
used Paradigm Based Analyzer morph analyzer
(Bharati et al., 1995) is very costly to build and
inefficient in handling OOV words. So we con-
sider features generated by it like G,N,P,C to be
”Non-Trivial”. Similarly, we consider POS tag as
a trivial feature. Note that there are no tools avail-
able to predict the stype and voice-type features
therefore these fall into non-trivial category.

Feature Tool
used

Trivial or
Non-Trivial Col

word-form none Trivial 2

Lemma Morph
Analyzer Non-Trivial 3,6

CPOS Morph
Analyzer Non-Trivial 4,6

POS POS Tagger Trivial 5

G,N,P,C Morph
Analyzer Non-Trivial 6

TAM,Vibhakti Vibhakti
Computation Trivial 6

Chunk ID,
Chunk Type Chunker Trivial 6

stype, voice-type Manual Non-Trivial 6

Table 2: All the features available in Hindi DTB.
G,N,P,C refers to gender, number, person and case.
TAM: Tense, Aspect, Modality

We try out different combinations of features
in gold tagged data as well as on the auto-data
(In auto-data, features are generated using tools).
We combine these strategies along with the differ-
ent strategies of incorporating word embeddings
to see the effect and find out most suitable combi-
nation for the auto-data.
Here we show the different combinations of fea-
tures we tried.

1. All features available in treebank for gold
data & all features derivable from tools for
auto-data (all features except stype, voice-
type).

2. Only trivial features which includes word-
form + POS (part of speech tag)+ TVC
(TAM, Vib, ChunkType, ChunkID)

3. Only word-form and POS

Note: To make evaluation feasible for output of
auto-data, we have used gold features for chunking
to handle the problem of chunk-heads mismatch
between gold test-data and output of auto test data.

23

As the accuracy of the chunker6 we have used is
very high, this does not affect much to the system.

4.3 Learning Vector Space model
In recent years, there has been a trend in the NLP
research community of learning distributed rep-
resentations for different natural language units,
from morphemes, words and phrases, to sentences
and documents. Using distributed representations,
these symbolic units are embedded into a low di-
mensional and continuous space, thus it is often
referred to as embeddings.

Here, we give a brief idea about the working of
Word2Vec tool. The word2vec tool takes a text
corpus as input and produces the word vectors as
output. It first constructs a vocabulary from the
training text data and then learns vector represen-
tation of words.

Various approaches have been studied for learn-
ing word embeddings from large-scale plain texts.
Most commonly used approaches are, Continu-
ous bag-of-words model (CBOW) and Skip Gram
NNLM. CBOW being faster than Skip Gram ap-
proach, in this study, we consider the Continu-
ous Bag-of-Words (CBOW)(Mikolov et al., 2013)
model.

The basic principle of the CBOW model is to
predict each individual word in a sequence given
the bag of its context words within a fixed window
size as input, using a log-linear classifier. This
model avoids the non-linear transformation in hid-
den layers, and hence can be trained with high ef-
ficiency.

With large window size, grouped words us-
ing the resulting word embeddings are more topi-
cally similar; whereas with small window size, the
grouped words will be more syntactically similar.
So we set the window size to 5 for our parsing task.

Figure 1 represents a typical CBOW model.
The model learns compressed, continuous repre-
sentations of words. We call the vectors in the
matrix between the input and hidden layer, word
vectors. Each word is associated with a real val-
ued vector in N-dimensional space (usually N = 50
- 1000). These word vectors can be subsequently
used as features in many NLP tasks. As word vec-
tors can be trained on huge text datasets, they pro-
vide generalization for systems trained with lim-
ited amount of supervised data. Word vectors cap-

6http://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php we
are using shallow parser for automatic features

Figure 1: CBOW model

ture many linguistic properties (gender, tense, plu-
rality, even complex semantic concepts)

Training: First of all, we train a vector space
model using the raw data mentioned in section 3.2.
We keep the size of word vectors to be 100. So
now we have word-embeddings ready to be used.

We perform K-means clustering over the vec-
tors formed to group similar words into one clus-
ter. We keep models ready with different values of
‘K’.

4.4 Incorporating Embeddings in Conll Data

In the FEATS column (in a CoNLL file) of com-
monly used template of Malt Parser, the fea-
tures are generally discrete and are separated by
pipes (”—”). Whereas the features generated by
Word2Vec are Numeric (Continuous). So, we
created new columns for each numeric-feature
and added them in the template/Conll X data-
format file to consider them as numeric features.
Similarly in the ‘feature model specification file’
where, the features to be considered are defined,
we added top of stack and current input into con-
sideration for every new dimension/feature from
the vector. So, in the present state, the FEATS col-
umn is not affected and new columns are added to
the feature templates.

24

4.5 Different Strategies To Gather More
Information In Word Embeddings

Just like different combinations of features as
described in section 4.2, we also try out different
strategies to produce different word embeddings.
Every strategy used, produces vectors containing
different types and amount of information.To
understand different strategies, we take a dummy
example and apply all the strategies to it.
Let’s say ”a b c” is a chunk consisting of 3 tokens
a, b and c, where ‘b’ is the chunk head. Let’s say
our word vectors consist of 3 dimensions.
word vectors for a, b and c:
a: 1, 2, 1
b: 2, 1, 2
c: 0, 3, 3

1. Chunk-Head Word Vector: In this strategy
we directly add word embeddings for chunk
heads as features in the inter-chunk data. So
in our dummy example, the word vector fea-
tures of chunk-head will look like:
b: 2, 1, 2

2. Concatenate Window-1: To capture the
context information which we miss-out dur-
ing inter-chunk parsing, we concatenate vec-
tors of previous, current and next word (from
full data) to get a combined vector of size
300. We add this new vector to the chunk
head as features. In our dummy example, size
of word vector would become 9.
b: 1, 2, 1, 2, 1, 2, 0, 3, 3

3. Average-out vectors in chunk: When we
are dealing with inter-chunk parsing, we gen-
erally focus only on the information provided
by the chunk-heads and ignore other infor-
mation from other words in the chunks. To
include this information, we take vectors of
all the words present in the chunk and take
average of each feature, to get a new vector
of the same length. We use this vector as a
feature for the chunk-head. Now, the features
in chunk head also capture entire information
provided by the words in that chunk. In our
example,
b: (1+2+0)/3, (2+1+3)/3, (1+2+3)/3
b: 1, 2, 2
We know that concatenation of vectors works
better than averaging them, but we can not

concatenate the vectors in a chunk, as the
number of tokens in a chunk vary from chunk
to chunk. If we do concatenation in a chunk,
we would get vectors of different dimensions
for different chunk-heads, which would not
be consistent with the feature template.

4. Cluster ID: In this strategy we add Cluster
ID of word (or lemma in case of word not
found) from the clusters formed as described
in section 4.3 in the FEATS column as an
additional feature.This strategy can also be
combined with the other three strategies.

5 Experiments and Results

5.1 Baseline
We set up two baselines, one for gold-data and an-
other for auto-data. For learning and parsing of
baseline systems, we use MaltParser with all the
default settings. In the baseline systems, we use
all the available features in the gold and auto data.
The baseline for gold data gives LAS of 82.23%
& for auto data the baseline LAS comes out to be
76.55%. As expected, the baseline for auto data
is much lower (about 6% LAS) than gold data be-
cause the features in auto data are obtained using
automatic tools and are worse in quality than gold
features.

5.2 Combinations of different features and
word embedding strategies

In our first experiment, we try to find out optimal
number of clusters to be used while clustering the
vectors to get best results. We try out different
values of ‘K’ ranging from 25 to 700 and come to
conclusion that K=200 gives the best results when
we use cluster ID as a feature in the parsing. So,
we fix the value of ‘K’ to be 200 for further exper-
iments.

5.2.1 Gold Data
In experiments with gold data, we first try out
different strategies of incorporating word embed-
dings, and taking all features from FEATS col-
umn. The results can be seen in table 3. We
observe that the strategy of concatenation of con-
text vectors works best for gold data, giving an in-
crement of 0.6% in LAS Score. We can see that
all the strategies of word embeddings produced
some increment in accuracy. In further experi-
ments on gold data, we show results for the tech-
nique of concatenation only as this strategy per-

25

formed best in all the experiments. From these ex-
periments we can say that, word-embeddings cap-
ture some additional real world aspects of lexi-
cal items, which are quite distinct and unlikely to
be deduced from the morpho-syntactic informa-
tion like morph, POS-tag and chunk. This comple-
menting semantic information is helping improve
parse quality. We also performed combination of
both the strategies (cluster ID along with concate-
nation) and did not find it helpful.

Experiment
(Features Used) LAS UAS LS

Baseline / All feats 82.23 90.33 84.54
All feats+vectors(1) 82.51 90.43 84.84
All feats+context(2) 82.83 90.73 85.18
All feats+chunk avg.(3) 82.61 90.46 84.95
All feats+cluster ID(4) 82.57 90.58 84.84
All feats+context(2)
+clusterID(4) 82.76 90.66 85.14

Table 3: Results on Gold Data, All features, dif-
ferent Word Embedding strategies

Then we apply all the strategies of word em-
beddings to the data where we take only trivial
features. The baseline accuracy (where no word
vectors are added) is decreased in this case. This
shows that not only trivial but all the features (if
provided correctly) are important for parsing. This
time also, we observe similar pattern as seen in
above experiments. Once again the concatenation
performs better than chunk average and it in turn
performs better than normal adding of word vec-
tors. Here we observe that combination of con-
catenation with Cluster ID improves the results
further. In Table 4, we show the improvements
for the strategy of concatenation. We observe that
cluster ID in itself does not improve results much
but when used with other strategies, it helps im-
prove the results further.

Experiment
(Features Used) LAS UAS LS

trivial features only 81.95 90.19 84.18
trivial+vectors(1) 82.39 90.31 84.62
trivial+context(2) 82.73 90.76 84.95
trivial+context(2)
+clusterID(4) 82.74 90.76 85.00

Table 4: Trivial features with different word em-
bedding strategies

So, to conclude, we get a maximum LAS score

of 82.83% using the context concatenation strat-
egy. And we have shown that using chunk ID as a
feature may sometimes help improve the scores.

5.2.2 Auto Data
Our main focus is to improve the results of auto-
data as real time systems only have access to auto-
matically extracted features. We do the same ex-
periments with auto-data to see the results. In our
first set of experiments, we use all the features in
FEATS column and see effect of different embed-
ding strategies.

Experiment
(Features Used) LAS UAS LS

Baseline 76.55 87.45 79.02
All + vectors(1) 77.09 87.62 79.62
All + context(2) 77.34 87.67 80.00
All+chunk avg.(3) 78.07 87.98 80.63
All + Chunk ID(4) 77.05 87.63 79.57

Table 5: Results on Auto Data, All features, dif-
ferent Word Embedding strategies

Here, we see maximum improvement of 1.52%
over the baseline. In case of auto-data we observe
a little change in pattern. We see that here, the
averaging of all the chunk vectors performs bet-
ter than the concatenation of context vectors, un-
like the gold-data. One of the reasons behind this
might be that, ”vibhakti” feature captures some-
what information in the chunk. Gold data being
manually annotated, this information is accurate
in it but in auto data, it may not be accurate. So,
to gather this information more accurately, need of
help from other words in chunk arises and hence
helps in improving results for auto-data. We ob-
served that averaging of chunk performs better in
all further set of experiments. Similar to the gold-
data experiments, we will now show results only
for this strategy in the further experiments.

Experiment
(Features Used) LAS UAS LS

trivial features only 77.64 88.26 79.87
trivial + vectors(1) 78.04 88.34 80.36
trivial + chunk avg.(3) 79.24 88.79 81.66
trivial+chunk avg.(3)
+ cluster ID(4) 79.30 88.83 81.67

Table 6: Trivial features with different word em-
beddings

The second set of experiments (table 6) is per-

26

formed similar to gold-data, taking only trivial
features. Unlike gold data, we find that the results
improve over that of the experiments with all fea-
tures. This shows that the non-trivial features, we
skipped in these experiments are not accurate and
hence produce sub-optimal results.

The maximum improvement of 2.52% is ob-
served over baseline in the combination of two
strategies Cluster ID and Chunk avg.

In third set of experiments on the auto-data
we try to use only the most basic feature
“POS”, which is very easy to obtain for any lan-
guage.(table 7)

Experiment
(Features Used) LAS UAS LS

POS 67.99 82.16 69.75
POS + vectors(1) 69.14 82.76 70.84
POS + chunk avg.(3) 79.16 88.45 81.77
POS+chunk avg.(3)
+ cluster ID(4)

79.10 88.43 80.97

POS + cluster ID(4) 47.18 57.73 55.22

Table 7: Only POS feature in feats column

Here we can see that using just one additional
feature (POS) along with word embeddings pro-
vides very good results.

On the conrtary, Cluster ID as a feature had
a negative effect on these experiments which is
based on the fact that there is no feature which now
captures the information about the context which
was earlier captured by Vibhakti feature.

5.3 Domain Adaptation
Another problem we try to tackle is of domain dif-
ference between training and testing data. When
we have parser trained on data of certain domain
(in our case news articles and heritage) and we
want to use it for parsing data from another do-
main, we need to bridge the gap between diverse
vocabulary of different domains, which makes
parsing difficult. For this task, we group words
with similar semantics into clusters.(as mentioned
in section 4.3). These clusters help in handling
new words by treating them similar to other words
from the same cluster.

We experiment different approaches on the data
of four domains: box-office, cricket, gadget and
recipe. The data statistics are shown in table 8.
The data we have, for different domains, is man-
ually annotated for dependency relations, but the
features provided in the FEATS column are auto-

matically obtained using tools. So, we also tried
out using different combination of features, as we
did in previous experiments.

Counts
Domain sentences chunks word vector

not found
Box Office 509 3986 20
Cricket 508 4487 36
Gadget 527 4340 141
Recipe 544 4082 47

Table 8: Domain Data statistics

Table 9 shows LAS for different experiments
we tried.

As expected, we can see that removing the non
trivial and less accurate features, improves the re-
sults of parsing by large amount as compared to
the baseline. For each domain we can see that us-
ing cluster ID as a feature improves the quality sig-
nificantly.

One strange thing we observed is, using word
embeddings as features has adverse effects on
parsing. One reason behind this might be, by us-
ing 100 dense features while training, parser might
have learned more accurately for the domain of
training data and got biased toward the specific do-
main. We can see that the same pattern is followed
by each domain.

Domain
features

Box
-office Cricket Gadget Recipe

all 69.84 65.73 63.00 60.31
all + vect 60.59 51.74 53.25 49.56
all+cluster 70.92 67.13 64.40 61.02
triv 77.32 72.17 71.36 66.88
triv + vect 67.89 58.58 62.67 52.72
triv+cluster 77.47 74.11 72.88 68.57

Table 9: Domain data LAS (all: all features in
FEATS, triv: only trivial features).

6 Observations and Discussion

From the above experiments on gold-data and
auto data, we observe that using trivial features
(which can be made easily available for any lan-
guage) along with the word embeddings, the gap
between auto-data accuracy and gold data accu-
racy is reduced to almost half compared to origi-
nal. We also observed that using merely one fea-
ture “POS”, which is very trivial to obtain, we can
reach close to the maximum auto-data accuracy.

27

a.

b.

c.

Root When 1991 Mary here came NULL rulers here water reservoir roof built .

Figure 2: Gold tree(a), Auto tree(b), Auto+chunk Avg.+clusterID tree(c)

Let us look at an example.
(jab)(when) (1911 mein)(1911 in) (queen
Mary)(queen Mary) (yahaan)(here) (aai thi
,)(came aux ,) (NULL)(then) (Brtish shasako
ne)(British Rulers-Erg) (yaha ke)(here’s) (paani
ke)(water of) (hauj ke oopar)(reservoir above) (ek
chhat)(one roof) (banwai thi)(built aux) (.)(.)

Translation: In 1911, when Queen Mary came
here, British rulers had built here a roof above the
water reservoir.
Figure 2(a) shows the gold tree, 2(b) the trees pro-
duced by auto trivial features and 2(c) the tree pro-
duced by auto trivial + chunk avg + clusterID (the
trees are interChunk, i.e., between chunk-heads).
Improvement can be clearly seen in the tree by us-
ing the chunk avg. technique (strategy 3 under sec-
tion 4.5). ‘Mary’ should be marked as ‘k1’ (doer)
of ‘came’ but it is wrongly marked as ‘k7p’ (place
of action) as the information provided by trivial
features is not sufficient to identify that the word
‘Mary’ is name of a person (the POS tag ‘NNP’
(proper noun) is assigned). The problem is re-
solved when we use the technique of chunk avg.
and clusterID.

We found that most of the words in the cluster
containing word ’Mary’ are British names as the
treebank data is from news and heritage domain.
Data from Indian heritage domain contains de-
scription of British people at various places. The
information that Mary is a person and not a place
is captured by the clusterID and the word-vector.
In similar way the case of ‘k7p’ for ‘reservoir’ and
‘k2’ for ‘roof’ is handled.

From above observation we can say that some
semantic properties of words are getting captured
in the word vectors which also include some mor-
phological characteristics.

7 Conclusions

Experiments on gold data have shown that use of
word embeddings and cluster ID as features, is
helpful for the resource rich languages for which
accurate tools for obtaining features are available.

The main outcome of our experiments is that,
we can achieve good results for parsing of
resource-poor languages (for which tools and tree-
banks are not available) by using simple features
or even just the POS tags and having a large mono-
lingual corpus in hand.

28

The strategy of clustering is most useful in the
case of domain adaptation. It helps in reducing
difficulty faced in parsing because of vocabulary
mismatch across different domains.

8 Future Work

In our experiments, we have neglected very low
frequency words to efficiently learn a vector space
model, which tends to loss of important vocabu-
lary words. In Morphological rich languages like
Dravidian Languages, where same root-words in-
flect to have many word forms with different suf-
fixes and prefixes, it becomes extremely difficult
to model all words efficiently while learning word-
embeddings for them. Therefore it might be a
good idea to treat suffixes as separate words and
learn embedding for them too. According to var-
ious works on compositional semantics (Krishna-
murthy and Mitchell, 2013; Kalchbrenner et al.,
2014; dos Santos and Gatti, 2014), it has been
shown that we can efficiently learn embedding of
group of words by knowing embedding of individ-
ual words. In this case, a word can have multiple
suffixes and prefixes along with one root-word. So
this word will be formed with compositional se-
mantics of all those word-embedding.

References
Rafiya Begum, Samar Husain, Arun Dhwaj,

Dipti Misra Sharma, Lakshmi Bai, and Rajeev
Sangal. 2008. Dependency annotation scheme
for indian languages. In IJCNLP, pages 721–726.
Citeseer.

Akshar Bharati and Rajeev Sangal. 1993. Parsing free
word order languages in the paninian framework. In
Proceedings of the 31st annual meeting on Associa-
tion for Computational Linguistics, pages 105–111.
Association for Computational Linguistics.

Akshar Bharati, Vineet Chaitanya, Rajeev Sangal, and
KV Ramakrishnamacharyulu. 1995. Natural lan-
guage processing: a Paninian perspective. Prentice-
Hall of India New Delhi.

Akshara Bharati, Dipti Misra Sharma, Samar Husain,
Lakshmi Bai, Rafiya Begam, and Rajeev Sangal.
2009. Anncorra: Treebanks for indian languages,
guidelines for annotating hindi treebank.

Akshar Bharati. 2006. Anncorra: Annotating corpora
guidelines for pos and chunk annotation for indian
languages.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.

2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for sta-
tistical machine translation. In 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics, Baltimore, MD, USA, June.

Cıcero Nogueira dos Santos and Maıra Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In Proceedings of the 25th In-
ternational Conference on Computational Linguis-
tics (COLING), Dublin, Ireland.

RA Hudson. 1984. Word grammar: Blackwell oxford.

Sambhav Jain, Naman Jain, Aniruddha Tammewar,
Riyaz Ahmad Bhat, and Dipti Misra Sharma. 2013.
Exploring semantic information in hindi wordnet for
hindi dependency parsing. In The sixth interna-
tional joint conference on natural language process-
ing (IJCNLP2013).

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A convolutional neural net-
work for modelling sentences. arXiv preprint
arXiv:1404.2188.

Prudhvi Kosaraju, Samar Husain, Bharat Ram Am-
bati, Dipti Misra Sharma, and Rajeev Sangal.
2012. Intra-chunk dependency annotation: expand-
ing hindi inter-chunk annotated treebank. In Pro-
ceedings of the Sixth Linguistic Annotation Work-
shop, pages 49–56. Association for Computational
Linguistics.

Jayant Krishnamurthy and Tom M Mitchell. 2013.
Vector space semantic parsing: A framework for
compositional vector space models. ACL 2013,
page 1.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis Lectures on
Human Language Technologies, 1(1):1–127.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(02):95–135.

S Sheiber. 1985. Evidence against the context-freeness
of natural languages. Linguistics and Philosophy,
8:333–343.

29

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013. Parsing with composi-
tional vector grammars. In In Proceedings of the
ACL conference. Citeseer.

Reut Tsarfaty, Djamé Seddah, Sandra Kübler, and
Joakim Nivre. 2013. Parsing morphologically rich
languages: Introduction to the special issue. Com-
putational Linguistics, 39(1):15–22.

30

